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I. INTRODUCTION

These lectures must begin with an apology. Normally at
achools such as this, one expects the lecturer to be an
acknowledged expert on the aubject matter he is discussing. Here
this 1is not the case. Design of high energy proton sterage rings
is not exactly my forte. Why am I doing this? There are several
reasons, short of mental illness.%

1. I want to learn this subject myself and there 1s no
better way than trying to teach it. And Ferbel didn’t stop me.

2. There needs to be a broader knowledge of accelerator
physica in the elementary-particle community. Experimentalists at
the storage rings find themselves especially closely coupled to
their machine and its operation. And theorists can find
interesting and challenging questions which lie at the frontier of
the very active field of nonlinear mechanics.

3. Straightforward extrapolation of existing acceleration
techniques would seem to lead to very large, expensive machines.
While we may envision one, perhaps two generationz of future
accelerators using essentially existing techniques, the question
of how to go beyond that is a difficult one. There seems to be a
growing feeling that it is not too soon to start to face up to the
problem. A look at the alternative--as we do here--can only
provide stimulation. -

#3ee Appendix II.

+Lectur-es given at the 1982 NATO Advanced Study Institute, Lake

George, N. Y., June 1982,
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There is a famous plot ("Livingston Plot") of cms energy
attained as a function of calendar year (Fig. 1). One sees,
remarkably, a doubling-time of ~2-3 years. Can this be
maintained? Extrapolating into the future, there exists UNK, the
Soviet project, talk of a VBA {very big accelerator) with
E $ 50 TeV (for colliding beams), and even the beginnings of
disCussion of a possible US machine on that energy scale. Beyond
that 1ies wunknown territory, and a fundamental challenge to the
natural push to even higher energy. This unknown territory of the
distant future is where we shall reside during these lectures. We
shall project ourselves inte the years 2010-2020, and look at an
utterly unimaginative scaled up pp collider of 500 TeV + 500 TeV.
Needless to say, such a machine is clumsy (circumference > 10%km)
and expensive (cost > 1000 Tevatrona) and must not be taken
seriously. Nevertheless, the choice has the following advantages:

1. By stretching present ideas to (beyond?) the breaking
point, we learn the scaling laws for more practical machines, i.e.
how machine parameters scale with energy.

2. Once having grappled with such staggering energy scales,
it is easier to interpolate back to "reasonablem (??) machines
like the VBA.

3. It is an interesting exercise to see whether such a
machine, even were it economically feasible, c¢could work, or
whether there are intrinsic technical limits to the energy-scale
available to the present technology.

4. A 500 TeV proton ring is a nice pedagogical machine. In
particular, synchrotron-radiation becomes quite important, and
thus this proton machine shares features--and
problems~~characteristic of contemporary ete” astorage rings.

5. The machine is s0 big, so remote in time, and so unlikely
to be built that no one could be misled into thinking that I take
any of this seriously. To repeat, this machine is not to be taken
seriously. This machine 1is not to be taken seriously. THIS
MACHINE IS NOT TO BE TAKEN SERIOUSLY.

Our main purpose, after all, 1is pedagogy. In the next
section, we shall try to ocutline in a rough semigquantitative way
the big picture, i.e., we try to provide an overview of ths
material to follow. Section IIT 1is devoted to a more detailed
discussion of linear optics and betatron motions. In Section IV
w2z briefly survey questions of errors, telerances and nonlinear
resonances. In Section V we provide a very sketeny parameter list
for the 500 TeV collider, and discuss some of the uncertainities.
Section VI discusses some of the various demands upon the
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detection apparatus--especially the apparent inevitability of
multiple interactions per bunch crossing. Section VIT is devoted
to concluding comments. An appendix provides a bibliography from
which these lectures where prepared.
II. ODVERVIEW
This section is divided into the following subsections:
1. Closed orbit

2. Vertical motion (betatron oscillations)

3. Horizontal motion (betatron oscillations and
momentum dispersion)

4. Synchrotron radiation

5. Longitudinal phase space

6. Synchrotron damping of the phase space
T. Quantum excitation of the pnase space.
8. Single beam instabilities

9. Luminosity

10. Beam-beam effect

1. Closed Orbit

Get a map and drag a cirele. {(This is a common pastime of
laboratory directors.”) The bending radius p is proportional to
momentum p and inversely proportional to magnetic field B:

p = eBp (2.1
The conversicn factor is

0.3 GeV/c = 1 T-m = 10 kG-m (2.2)
(We shall often set W=c=1.) We shall choose 10T magnets, inasmuch
as that has already been projected for the 20 TeV VBA. This gives

for nominal radius p and circumference C:

o 170 km.

(2.3)
c

1100 km.



i

The actual values will be somewhat larger in order to account for
the quadrupole magnets and straight sections.

2. Vertical Motion

No particle exactly follows the design orbit. The typical
particle undergoes small oscillations about the design orbit. To
a good approximation the vertical, horizontal, and longitudinal
motions may be treated independently. Focussing is provided by
quadrupole magnets; we write (with z the vertical coordinate and x
the horizontal coordinate transverse to the direction of motion)

B, = 0z (2.4}
{implying, via Maxwell equations, BZ=+Gx, i.e. defocusaing in the
horizontal plane.)

The state~of-thecart maximum gradient G is ~1 T/cm; we take
G = 2T/cm. (2.5)

The transverse kick a particle gets in going through a quadrupole
magnet of length & is roughly

Apx t eGlz (2.6)
For focussing iIn both planes one alternates focussing and
defocussing quadrupoles which are spaced in such a way that, on
average, the <|z|> of particles at defocussing gquads is smaller
that the <|z|> at focussing quads. Provided this can be arranged,
then there will be net focussing. The condition for this is, in
order of magnitude, that the focal 2length f of the quads be
comparable to their spacing L. A typical particle orbit then is
shown in Fig. 2.

From the above equation we see this implies

o ~ 2~ EEE ~ eGlz (2.7)
z f p D

Thus the condition for stable, strong focussing is

eGLL ~ p = eBp {2.8)

Normal econcmics implies that the investment in quads not be a
large perturbation on the investment in dipcle magnets



2

T £{0.1-0.2) {2.9)
and hence
0.1e62% ~ p = eBp (2.10)

The spacing between F and D quads is then

L~ 3/ 28

(2.11)

and {for fixed magnet parameters) scales as El/z. We estimate
Estimated Actual
L - 20 m 30m Fermilab TeVatron (2.12)
500 m (400 m) 2020 Machine *

The wavelength of the betatron oscillations evidently ailso
scales with L; actually the typical wave-number is "L~!. & very
fundamental machine parameter is the tune. It is defined as the
number of betatron oscillations per revolution

Circumference ~ 2P . p

vz = Betatron wavelength 2nL L

(2.13)

We =see that the tune also scales as ”El/z. We find from the rough
estlimate
Estimated Actual
~ 50 19.3 TeVatron
Vo 350 { 4o0) 2020 Machine (2.34)

(The discrepancy in the cass of the TeVatron is acecounted for by a

smaller value of &/, and a larger choice of betatron wavelength
~10L. )

It is useful to consider the beam as a population in phase
space. Vertical phase-space®* iz just z--pz space. Provided the

*Canonical phase space here: the definition typically used by
accelerator physicists contains a factor ¥; ef Chapter TII.
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dynamics is derivable from 2 Hamiltonian (as 1is the case for
particles moving 1in external electromagnetic fields--including
time-dependent fields), the area in phase-space must be conserved,
according to the Liouville theorem. Typically this area, as
determined essentially by the low energy source, is

Az Apz = phase-space area = 1 MeV-cm. {2.15)
(In natural units this is ~10*%.)

We may now estimate the nominal beam size in a storage ring.
Our previous estimate in Eqn. (2.6) relates Ap_ to Az through the
focal structure of the lattice (by lattice we m2an the array of
magnets comprising the ring)

Bp = eGL Az (2.16)
Then
Az Ap - 9%9“- «[L(AZ)Z) (2.17)

Only the right-hand factor is not a fixed quantity. Hence the
nominal beam size¥* scales as

Az ~ LV - E"Wi

{2.18)

The nominal transverse momentum in the beam scales as

ap - MM (2.19)

A
Putting in the numbers gives
TeVatron 2020 Machine
Az -~ 0.3 mm 70U (2.20)
Apz - 30 MeV 140 MeV

The shape of the population in phase space changes as one proceeds
around the ring. It is typically elliptical, but the axes and
orientation (but not areal!) vary as one proceeds around the ring,
as shown in Fig. 3.

*This E_I/“ scaling of beam size in different storage rings should
not be confused with the change in beam-size during acceleration.
There the gradient G scales with B and hence with energy in order
to keep a constant tune v during the accgleration cycle.
Therefore durlng acceleration, Az~g"} 2; Apz"E+ 2,



3. Horizontal Motion

The description of horizontal betatron oscillations 1is very
similar to vertical oscillations. Inclusion of the effect of
eurvature of the design orbit changes the tune v_ by a negligible
amount. A more important effect has to do with dispersion: an
of f-momentum particle has a different closed orbit (cf Fig. 4).
If the momentum exceeds the design momentum by an amount Ap (in
the high energy limit),the new closed orbit will 1lie at larger
radius. Write, for a typical particle

x(8) = xs(s)+x8(s) _ {2.21)

where x, 1s the betatron amplitude at coordinate s along the
design obbit, and x_ is the correction to the radius of the closed
orbit. In linear approximation

- n(s)ie
X, = nis) b (2.22)
Let us estimate the nominal value of n(s). In going through a cell
(a cell is the basic element of the lattice consisting of F quad,
D quad and the two sets of intermediate bending magnets), the
of f-momentum particle must be bent through the same angle; hence
it must get an extra p,. kick from the quadrupoles in proportion to
its momentum deviation Ap/p. We must have

Ap Extra p., kick eGix
it - ! = ot (2.23)
Pyy Main Pr kick = ZeRBL ¢

This implies

~ 2B L
<n(s)> 5 I (2.24)

a value independent of machine energy. Putting in the numbers
gives

Estimated Actual

m 2m TeVatron
<i(s)> - (2.25)
Tm 0.7Tnm 2020 Machine

For typical machine apertures of a few centimeters, a momentum
spread Ap/p € 107?2-10"% may be accepted independent of energy.
The actual momentum spread in the beam must be found by
considering longitudinal phase-spaca. We do this in part 5.



4. Synchrotron Radiation

In proton storage rings the beam may be bunched as it is
during acceleration or as in pp colliders such as TeV I, where Dp's
are in short supply. In other cases the beam may be unbunched
("coasting”) as in the CERN ISR (or as in the ISABELLE design).
In e*e” machines, the beams are necessarily bunched, because the
energy loss from synchrotron radiation must be compensated by an
RF accelerating system. In our 500 TeV machine, protons also emit
a signjficant amount of synchrotron radiation. The handbook
formula  for the energy loss per turn is (with H=c=1)

Y

Energy loss/revolution = U, = %EE-E) (2.26)
With our parameters, this implies

u. = 3 GeV/turn {2.27)

0

This radiation is emitted in a broad spectrum of photon
energies, but the typical photon ensrgy or critical energy Ec is
given by

3 gu
~ 3{E - 0,
Ec a(a) Tro (2.28)

o lk=

For the 2020 machine, this is
E, 7 300 keV {2.29)

This gives the typical number of photons emitted per turn as
Photons/revolution ~ O~ ¥ (2.30)

At 500 TeV, we get

Emitted photons/revoiution 7 Mx103

(2.31)
Taus a coasting proton would lose =1% of its energy in 2000
revolutions. Inasmuch as the revolution frequency is 250 Hz, 2000
turnz is only 8 sec. A coasting beam is not possible. An RF
system must be provided.



5. Longitudinal Phase Space

To define longitudinal coordinates, we may use the energy
deviation ¢ (or momentum deviation Ap=e) and the distance As from
a reference particle at the center of the bunch f{or equivalently
the arrival-time delay (-1) of the particle at a given point of
observation). As one might expect, € and 1 {or Ap and As) are
canonically conjugate variables. Somewhere arocund the ring RF
cavities must be placed to provide the acceleration. A particle
with energy E entering the cavity at time 1 leaves the cavity with
energy E+V(T), where by definition this defines the RF voltage
Vi{t). The RF voltage must be synchronous with the particle motion
around the machine. Thus V(T) must be periodic

hw
Q
where
w
fo = 5 = revolution frequency (2.33)
and
h = integer = harmonic number (z.34)

Typically (but not always) V{t) is sinusoidal, and we shall assume
it to be true here:

v(T) = Vv, sin (hwot+¢0) (2.35)

The choice of RF frequency is determined 1in large part by
practical considerations beyond the scope of these lectures. At
Fermilab, the RF frequency is ~50 Mhz; at CERN it is 7200 Mhz.
The higher the frequency, the less bulky the cavities, and we
shall provisionally piek (rather arbitrarily*) a frequency of
500 Mhz. This gives the harmonic number

h ™ 2x106 (2.36)

The synchronous particle (T=0) will gain energy VO sin ¢0 per
turn. This must match the energy loss UO:

¥Tn retrospect, I think this is a mistake. Lower frequency seems
preferable.
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U0 = VO sin ¢0 (2.37)

We may now write down equations of motion for € and 1, which
may be functions of time. The time variation is assumed to be
slow compared to the revolution frequencv. Then we have

BUO

de _ 0
- oF

w
Tt o [VO sin(htuoT+¢0)—U0—- e] (2.38)

(The last term ultimately must be included. It provides damping;
here we temporarily ignore it.)

Even in the absence of RF, the variable T will change with
time if the particle has a momentum error. This occurs because
the revolution frequency depends upon momentum. We write

Aw

o)

0 AT A
TEn (2.39)

where the "dilation factor™ or "momentum-compaction™ T is not the
same nf{s) as introduced in connection with the dispersion.
However this n (sometimes called o) is related to N{s). At high
energy,* evidently P

%At lower energy, there is another contribution to n (of opposite
sign) coming from the change in velocity with momentum. Since

T oy {(F.1)

N=="% "33 3 (F.2)

At the wvalue vy=Y.,, or transition energy, 1 changes sign and
longitudinal motion becomes more nontrivial. This c¢reates some
complication during acceleration in lower energy machines. From
Eqns (2.8), (2.13), and (2.24), we may see that vy.-v. For the
2020 machine, injection energy will be well above transition.
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Ap <Ap> <n{s)> Ap
- = = - 2.4
ng 5 o > (2.50)

or

<n(s)>

n = 2 (2.41)

For the 2020 machine, our rough estimate gives,

n ~ 6x10~8 (2.142)

Bacause of the dispersion, an off-energy particle will, in absence
of other effects, change its position As, (or time T) relative to
the reference particle. We have

dv . _pde .
it ~ - Mg -

o] Pu]

€ (2.43)

This, together with Eqns. {2.37) and (2.38), leads to the equation
of motion

2

(=1
PE ]

1=

[1\)
5% v, [sin(hum T+d,)-sind ] (2.14)

N

dt

For $.=0 {no synchrotron radiation) this is the equation of a
pendulum, with T playing the role of an angle {"synchrotron
phase")., For small amplitudes there is stability; for large

amplitudes there is not, and T on average increases linearly with
time.

For nonvanishing ¢., there is again phase-stability for small
amplitudes. For large amplitudes T increases (on average)

quadratically with time, and consequently € increases linearly
with time, implying eventual loss of the particle.

In the 1limit of small T, Eqn {(2.44) is Jjust an oscillator
equation, and the angular frequency ﬂs {synchrotron frequency) is

Q2 V.cosdn 1/2
] 0 0
0 = ( 2TE ) (2.45)

=

For our 500 TeV machine, we get (choosing VO"S GeV) for the
frequency of synchrotron oscillations,
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f
3

P ~ 1 Hz (2.48)

Justifying a posteriori our assumption of slow variation of T with
time.

It is again important to view all this in the longitudinal
phase space. Considering first the case ¢0=0, we see that in €-1
space the small amplitude orbits are approxXimately circular (or
-elliptical), centered at T=0, #2%/hw,, *bn/mw., (Fig. 5). Very
large amplitude orbits are straight lines € = const. In between is
a speclal orbit, the separatrix, which comprises the boundary
between oscillatory and non-oscillatory motion (it corresponds to
the pendulum oscillation with $180° excursion in angle). The
equation for the separatrix is easily worked out, especially if
one renmembers the facts of 1life about pendula. The region in
phase space of oscillatory motion which is enclosed by the
separatrix is ecalled, for obsacure historical reasons, an RF
bucket. The dimensions of the bucket are

At = si- (full width) (2.47)
)
28V, 172

AE = * -ﬂjﬁ-ﬁ-— (2,148)

The typical phass-space area occupied by high energy proton beams
is determined by the injectors

A AT~ 1-2 eV-sec (2.49)

For the 2020 RF system, the nominal bucket area {still neglecting
the synchrotron radiation) is much larger. We have

6¢EV0

——— e (2.50)
h3/2m0n1/2

Ae AT 7

Putting in the numbers with AT=2x10"Ysec gives,

Aemax -+ 150 GeV _(2.51)

and
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{Ae AT)R £ 300 eVY-sec. (2.52)

F bucket
If one puts in a bunch with the nominal, small longitudinal phase
space, it will evidently not occupy the full bucket area. Its
dimensions will typically be in proportion to the bucket
dimensions; hence (in the absence of synchrotron radiation
effects)

\1/72
Ae ~ Pha;e-;pice area Aemax - 150 Ge\i’/2 ~ 10 GeV
At ” 10-10 sec. - (2.53)
This would imply a bunch length
As ~ eAt T 3 em. (2.54)

If RF acceleration is present and ¢,.£0, the bucket size
decreases and the bucket shape becomes simi?ar to a fish, as shown
in Fig. 6. However, the nominal order of magnitude estimates
which we made will not be changed. An accuratg discussion of this
can be found in many places in the literature.

We note that at energies leas than 500 TeV, the synchrotron
radiation loss becomes quite small and the RF system is suitable
for acceleration of the beam from injection energy (~70 TeV??).
The time At required for acceleration to top energy is

- 500 TeV - .
At 550 Fox3 GoV 10 minutes (2.55)

which is reasonable.

To get an idea of the scale of this RF system, we mnote that
in the LEP design at maximum energy the synchrotron loss per turn
is ~2.4 GeV. The RF system (350 Mnhz) is 1.6 km long and consumes
~100 MW. For the 2020 machine we therefore need "3 km of RF with
nominal power consumption (without considering future improvements
such as superconducting RF) of ~200 MW. On the scale of this
machine, these requirements are quite modest.
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6. Radiation Damping

Emission of synchrotron radiation leads to damping of the
Phase space population of the beam. Congilder first the vertical
degrees of freedom. Synchrotron radiation is emitted along the
direction of motion of the particle ({(to accuracy of order
¥ !=(m/E)). Thus when a photon is emitted, the transverse momentum
is diminished by the same percentage as the longitudinal momentum.
But only the loss in longitudinal momentum is compensated by the
RF system. Hence the transverse momentum (better, phase-space
area) diminishes in accordance with the rate of energy loss from
synchrotron radiation.

14 (an amy = [0)%0 (2.56)
(dp_Az) dt Z EJ]\ 27 B
or
-/t
(8p,bz), = (8p,Az)g e Ty (2.57)
with the damping time Tv given by
E 21
= o em (2.58)
v U0 Wa

It is the time required for a particle to emit an amount of
synchrotron-radiation energy equal to its own energy. For the
2020 machine, we get

T, ~ 20 min. (2.59)

Notice that the scaling law is
T =573 (2.60)

with B the magnetic field in the ring.

Horizontal motion is in principle more complicated because
momentum dispersion and betatron oscillations are both damped, bu
are in fact coupled. But the complications are inconsequential,
and to good approximation
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Tﬁ =T {2.61)

The momentum spread is also damped. This can be readily seen
by returning to Eqn. (2.38) and keeping the damping-term {obtained
by expanding the energy loss due to synchrotron radiation through
first order in e.) Since

(E0+e)u
0 - — R {2.62)

(=}

we have, to good approximation®*

=

oU -
___0 = L ._0. (2.63)
JE 0

Reconstruction of the oscillator equation, keeping track of
the damping term, leads for small amplitudes to

d2 HUO

T 2 Wo at
5 - ST+ g5t (2.64)
a2 3 E, 2r dt
and thus
) = 14 A VAN (2.65)
with
E
1 21 -0
Tg =3 © B, 20, (2.66)

7. Quantum Excitation

At this stage we would infer that with time the beanm
phase-space would shrink to a point, with a characteristic time
equal to the time required for a particle to radiate 1ts energy
into syncehrotron photons. That is too good to be true and other
effects must intervene. The dominant effect (for beams of
sufficiently low intensity) arises from the same source, namely
the quantum nature of the emitted radiation. Quantum fluctuations
produce noise; the particle energy random-walks away from the mean

*

Strictly speaking, R is a function of e. But this contribution is
ecsily shown for our big machine to be small becauze of the
srallness of <n(s)>.
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energy, being limited only by the damping time itself. The energy
fluctuation is therefore

AE ~ JE;'EC (2.67)

where n_ is the number of phoftons emitted durlng a damping period
and Ec (an. 2.28) is the typical photon energy.

n_ "~ /ZEj (2.68)

or%
oz /5 |
==z (2.69)

For the 2020 machine this nmeans

aB - /300keV - 5 5x1070 (2.70)

E 500TeV

and a horizontal spread

~ _ AE
XEZ n E 20U (2.71)

These energy fluctuations drive horizontal betatron oscillations;
xB can neither dominate xe nor be negligible with respect to xE:

xB Xe (2.72)

A detailled discussion can be found in Sands.6

So far the vertical motion is not affected by quantum
excitation. While there is some vertical spread caused by the
angular distribution of emitted photons, this is negligible in
comparison to vertical spread induced by higher order effects
{askew quadrupoles, nonlinear elements such as sextupcle and
octupole fields; noise, ete.) These are not easy (certainly not
here) to quantify. Empirically one Finds in e*e”™ machines beam
heights ~1-10% of the beam width

Az ~ (.01-.1)Ax (2.73)

*This implies that AE/E ~ E//p. For electron machines, design
considerations force p“Ez in order to minimize the sum of RF
costs (a E*/p) and ring costs (a p). Hence AE/E is roughly
machine-independent.
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If true for the 2020 machine, this would imply

<Az> £ 2p (2.74)

More important than the actual size is the distribution in =z
or X. The noisy nature of the gquantum-fluctuation mechanism
suggests a gaussian distribution. However, this driving
mechanism, when coupled with the effects of nonlin$ar forces
{beam-beam interaction, resonances, ete.), turns out to produce
much longer {roughly exponential) tails. Formulation of
diffusion-equations for the phase-space population is necessary to
treat this question. Of course, the magnitude of the tail of the
distribution at the machine aperture determines the rate of beam
loss. ’

In proton machines at present energies, where synchrotron
radiation 1is negligible, the tail of the transverse density
distribution is much sharper. The dynamics which determines the
nature of this distribution 1is obscure and has to do with
nonlinearities in the optical properties of the lattice, the
beam-beam interaction, the number and strength of nearby
resonances, and sources of noise (power-~-supply ripple, BRF nolse,
and gas scattering).

8. Collective (Single-Beam) Instabilities

There exist a large class of instabilities which occur
because of the interaction of a single beam with its environment.
e electromagnetic field of the beam induces currents in the
walls of the vacuum chamber, which in turn create fields which
drive the beam. If the beam intensity is high enough and the
phase relation of the response to the source is "eorrect," there

“may be positive feedback and creation of instability.

Tnere are both transverse and longitudinal instabilities.
Some instabilities depend on coupling to resonant structures of
high Q (eg RF cavities). Others are present even in a
non-resonant environment. We shall not recite here the catalogue
of instabilities. But the most serious ones are those with high
frequency, where a single bunch executes complex internal motion
of nontrivial "multipolarity," rather than rigid motion.

Rigid motion of an entire bunch may be monitored, and there
is the opportunity to cure the instability via feedback. The
high~frequency "microwave™ instability must be cured by other
means. The most serious such instability for the 2020 machine
appears to be longitudinal and we briefly describe this one, in
order to give some idea of how these are handled.
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Consider first of all a coasting heam wiich has a small
periodic density modulation as function of longitudinal coordinate
3. (We ignore the transverse degrees of freedom.) The image
charge and wall current will likewise be modulated, and exert a
force back on the beam which 1s periodic with the same frequency.
We conslder®* this frequency W to be a multiple n of the revolution
frequency w,. Ten the beam finds itself in a RF potential V(w)
which may, if the phase relations are appropriate, tend to bunch
the beam, thereby increasing the image currents, whieh in turn
leads to increased bunching and ultimate instability. The induced
RF voltage V(w) will be linearly related to the perturbing current
1{w) (due to the linearity of Maxwell's equations)

Viw) = i(w)Z" {w) _ (2.75)

This relation defines the (complex) impedance, a quantity which
can be calculated by solving WMaxwell's egquations for the
glectromagnetic fields prgduced in the wacuum chamber by the
perturbed circulating beam.

For instability to ensue, WV(w) must be large enough to
capture the beam, i.e. to bunch the beam and contain the heanm
phase«space within the (self-consistently induced} RF buckets.
The bucket height is given by Eqn (2.48), with the harmonic number
given by n:

Z

2 .EV _E"ll
AE)® ~ — = = — 1 2.76
(AE) m o nm (2.76)

Thus large momentum spread and/or low currents are necessgry to
avoid the instability. {(This is the Keil-Schnell criterion”):
Iy,

2

For the "microwave" instability, the important wavelengths are
smaller than tne buach length (As). The impedance on the other
hand decreases as the frequency excesds cd"‘, where d is the
beam-pipe diameter. Then in evaluating Egqn (2.77), in this case,
we must use the peak, or instantaneous current in the bunch,
inasmuch as the instability is locally generated and would be

*If this is not the case the "induced"™ RF system can be thought of
as rotating around the machine at the difference frequency.
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equally important were the ring filled with bunches. That is,
even though the Keil-Schnell criterion was deriveqo for coasting
beams, it can be applied to tne bunched beam case.

We shall not estimate the impedance Z |/n at all. It gzets
many contributions from miscellanecus elements around the ring
{vacuum bellows, position monitors, RF cavities, etec.), especially
those with discontinuities in radius or shape, and is reputed to
be difficult to compute reliably. In any case Z|} 1is roughly
proportional to ecircumference. But for a given frequency w, the
harmonic number n is also proportional to circumference. Thus
Zyy/n is an intensive quantity, roughly independent of energy.
Empirically, for present machlnes

ZI l .
=~ % 1-10 ohms (2.78)

at the relevant wavelength of order a few cm.

We may now attempt some numbers. We choose i34 /n”3 ohms, and
take two cases. One iz that of T"short bunches," where the
synchrotron damping has reduced the momentum spread and bunch
length. This will, as we shall see, severely limit the number of
particles per bucket. The opposite extreme is to fill the bucket
(more or less; we take "25%) thereby maximizing AE and As, and
minimizing the peak current. The parameters we choose are

Short Bunch Long Bunch
Bunch length As 3 cm. 30 cm.
Energy spread AE 10 GeV 75 GeV (2.79)

Then the number W of particles per bunch 1is 1limited by the
Keil~Schnell criterion as follows.
3x108 short bunch

2x1011 long bunch (2.80)

Ng

For the "natural" short bunch, this is quite a severe limitation;j
intensities of 3x10'° to 101/bunch are the norm in present
machines. To see what 1is optimal, however, one must look with
care at the questions of luminosity and of beam-beam tune shift.

9. Luminosity
Let us put one bunch of p's and one of p's into the machine.

The luminosity & per crossing (for head-on collisions and ignoring
density variations across the bunch) is
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- N
x |G

wnere A 1s the area of the bunches and N the number of particles
per bunch (Luminosity x cross-section = no. of events). We get,
for the 1limiting cases of short and long bunch we considered in
the previous section, and using just the nominal area of the beams
in the machine,

Short Bunch Long Bunch
N ax10° 2x10"]
Area ~21ux 201 TOuxT0U
¥ (per crossing) 2x10%3 cm™2 8x10°8 op~? (2.82}

In the case of the 1long bunch, we have assumed a size as
determined by the betatron motion. Typically the dispersion
function N(s) i1s designed to vanish at the c¢ollision point, so
that the horizontal size at the collision region is controlled
only by the betatron phase space.

The case of the "long bunch" would lead to a quite
re.pectable luminosity already, when one considers that the
revolution frequency is 250 Hz, that the beam can be focussed more
strongly at the collision point than at typical points around the
ring, and that we can contemplate having a large number of bunches
stored 1in the ring. However, there is yet another limitation to
consider. This is imposed by the beam-beam interaction. Before
any serious optimization of luminesity can be attempted, the
beam-beam limit must be taken into account.

10. Beam-beam limit

The proton beam, through which the antiprotons necessarily
pass, is a {nonlinear) focussing element for the antiprotons (and
vice versa). Let us estimate tne focussing strength. To simplify
the discussion, approximate the proton beam by a uniform slab of
charge of half-width Ax and half-height Az<<Ax. Consider only the
vertical force, which for this "slab" geometry is dominant. Then
the vertical impulse received by an antiproton with impact

parameter z is easily worked out (most easily in the rest frame of
the proton bunch).

Nezz

Apz = efds ET(%&E) = Shxbz (ZfAZ) (2.83)
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We may compare this kick to that given by a lattice
quadrupole. This is (ef. Egn. (2.8)

(Apz) ~eGlz ~ T z {2.84)

quad

o

The (Ap ) from this quad changes the betatron tune vz by an amount
Av vhick is 0(1). Thus we get®

(&v)Beam beam = (Apz)Beam-beam - ey .
- (ﬁfpz) 2Ax Az

(2.85)

oI

quad

Tne {(linear) tune shift can be compensated by retuning
quadrupoles. However, some of the beam {and after many turns,
almost all of the particles) have impact parameters 2>Az and
suffer a smaller Av than the core. Thus Av is better regarded as
a tune spread. As we discuss 1later, in order to maintaln
stability the tune of the machine cannot be an integer or integer
plus a vulgar fraction p/q (p,q small integers). 1In practice the
tune must be controlled to a few percent of an integer. For ete”
machines, the empirical {and to some extent theoretical‘1limit on
Av is £.03 for PEP/PETRA/CESR and £.06 for SPEAR/DORIS.

For proton rings at present-day energies it is believed that
the maximum allowed Av probably is smaller than that, owing Lo the
lack of synchrotron-radiation damping as a stabilizing¥#
influence. Recent experience_aat the CERN pb collider indicate

stable operation at Av = 2-3x10 -, in accordance with theoretical
estimates.

¥Je have assumed the focussing strength at the collision point is

typical of that arocund the ring. This is typically not the case.
Very strong local focussing is used to increase the luminosity.
If the "focal 1length" is smaller, then L should be replaced by
the local focal length {more precisely the RB-function at the
collision point, to be discussed in the next section). However,
then the area A=AzAx should be replaced by the (smaller)} locecal
value ag well. It turns out that A is also proportional to L, s0
that the beam-beam tune shift is independent of the local
focussing strength.

¥*fter a damping time the electron beam forgets its past.
Protons at present energies, like elepnants, never forget. But
for electrons the radiation excitation introduces more noise into
the phase~space, a destabilizing influence.
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Qur 2020 machine is an intermediate case; we assume Av<.01 is
the 1limit (good to a factor 3). Putting in some rough numbers
then gives, for single bunches and our previous parameters,

q
A M .06 Mshort" beam

vbeam—beam (2.86)

0.3 "long" beam

Tnis i1s unacceptable, and we must optimize the Iuminosity
taking simultaneoualy into account the synchrotron damping, the
limit on single-beam current from the microwave instability, and
the limit from beam-heam tune shift.

We note here that the beam-beam limit, Eqn. (2.83), implies a
maxXimum wvalue for the transverse current density. To increase
luminosity it is advantageous to make the beam bigger. In
particular, dividing Eqn. (2.80) by (2.83), we get

- N_A..\E. . P_ +
Fd ora L {per crossing) (2.87)

Thus for fixed Av and p, our options are

1) Inerease N, at the same time somehow Increasing the area
Al

2) Decreazes L, i.e. mnmake the focussing at the collision
point as strong as possible.

We shall not pursue these issues further here, but will wait
until we have built up more formalism. Suffice it to say that we
do not yet have any reliable luminosity estimate.

ITI. OPTICS

1. Vertical Motions Hiil's Equation

In this section we shall discuss in more detail how one
describes the opties of the machine. We begin as before with
vertical motion, and write down the basic equations:

. - dz (3-1)
Z T3
g: = - kis)z | (3.2)

Here
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- pZ

Z EE*":@Z (3.3)

the derivative of the vertical coordinate is used as a momentum

variable rabther than pz. Thus phase space is conventionally taken
to be z-z” space.

The focussing function k(s) is (to first approximation), for
an ideal alternating gradient lattice, nonvanishing only within
quadrupole magnets, where

k(s) stg—G=:%5 (3.4)

The two first-order equations combine to produce an
oscillator-like equation.

z°” + k(s)z = 0 (3.5)
This is ¥known as Hill's equation. The focussing function is
periodic, k(s) = k(s+C), with C the orbit circumference., But

general solutions, of course, need not be periodic.

Were k a constant, we would have oscillatory motion.

z ~ Zy sin (% + 9p) (3.6)
4
z" - BE cos (F + ¢y (3.7)
with
1
8 = S (3.8)

a constant. The set of all orbits of constant amplitude would
form in z,z”,s phase space a tube (or torus if z is closed back
upon itself: z+C=z), with individual orbits following helical
paths around the tube, as shown in Fig. T.

Provided stable solutions exist, the general solution to
Hill's equation has a similar form. It is conventicnally written

z = YB(s)e sin ¢(s) (3.9)

where the anmplitude function B8(s) is periodic and depends only
upon the lattice, i.e. the focussing function k{s). The constant
€, called the Courant invariant, determines the normalization of
the amplitude. The phase function ${s) is determined by B8(s) as
follows
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8
ds

d(s) = [ BlsY {3.10)

3

0

This latter relation can be obtained by substituting the
"golution”, FEgn (3.9) into Hill's equation, and demanding the
coefficient of cos ¢ vanish.* The vanishing of the coefficient of
sin ¢ then produces a nonlinear second order differential equation
for B that we shall not bother to write down. There are other

convenient ways of obtaining the B-function, which we shall
describe later on.

The amplitude function B(s) is a most important funetion; it
determines the (linear) optical properties of the lattice, and
essential properties of the vertical motion. In particular the
tune v (the number of betatron oscillations per revolution) now
has a precise definition

q ds
V= o fBe) (3.11)

2. Linear Maps

We may obtain more insight intoc the motion and determine B(s)
as well by going back to the Hamiltonian form of two first-order
equations for z and z”. In this form the content of the Liouville
theorem is more directly seen.

First order linear equations can (like the Schrodinger
equation) be formally integrated. Define

/,

z(s)
E(s) = (3.12)
“(s)

and relate £(s+ds) to £(s). From Eqns (3.1) and (3.2)

E(s+ds) = [(c‘, ?)*(3@,) ;)d% £(s) = (14Tds)E(s) (3.13)

*The constant of integration one gets is set to zero. This cleans
up the equation for B.
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and hence £{(s”) can be obtained from £(s) by multiplying by a
preoduct of matrices each of which depend only on the lattice. For
sufficiently small As we have, schematically

E(s”) = M(s",3)E(s) = [T (1+TAs)IE(s) (3.14)
As :

[A veteran particle theorist will write

s
M(s",s) = P exp fs ds”’T(s”") (3.15)

where P is the path ordering operator.]
The matrix M(s”,s) is known as the transport matrix. Because

a lattice is composed of a sequence of basic elements and because
transport matrices satisfy the group property

M{(a"",s"M(s”,s) = M(s”"",s) ' (3.16)

we need only know the matrices for the basic elements. For
example

1 0 Thin focussing quadrupole#

M=
- % 1 (For defocussing, f+-f)
1 L Bending magnet or straight

M= (3.17)
0 1 section of length L.

Here the focal length is
1 eGl GR :
F*p =B (3.18)

Then £ can be propagated around the ring by multiplying these 2x2
matrices together. Note that the determinant of the matrix for a
basic element is unity; hence 30 also is a product of them

det M(s“,s) = 1 (3.19)
[This is directly related to the Liouville theorem.]
*For accuracy, one must go beyond the thin 1lens approximation.

For our purposes this is hardly necessary. The reader is invited
to work out the correction using the basic elements given here.
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Now consider the matrix for a complete circuit around the
ring. After N revolutions the coordinate is

AR AL (3.20)

If we diagonalize M

X 0
SM5-1 - 1
0 AZ (3.21)
we must have
)\1)\2 = 1 (3.22)
and for stability
. o1
11 = e
X, = e ¢ (3.23)

{(Otherwise g“ =~ lumax grows exponentially with W)

Tr M(s+C,s) = Tr SMS-1 = 2 cosd < 2 (3.28)

is sufficient to ensure stability. It takes little imagination to
guess that ¢ is essentially the tune

¢ = 2mv | (3.25)

[We leave the demonstration to the reader.] We may also obtain
B(s) from the transport matrix M(s+C,s}. Recall, from Eqn. (3.9),
along with one differentiation,

z(s) VB(2)e sing(s)
E:‘. = »
z”(s) Var—c cosdls) + B LE

€
B(s) 2 TR(s)

sind (s) (3.26)

Now choose the initial phase such that ¢(s)=0 and initial
amplitude €=B. Then

£(s) = (?) (3.27)

After one revolution
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A(s) sin 21v
E(S+C) =

-

cos 21V + %— sin 2mv (3.28)

But from the definition of the transport matrix and Egqn. (3.27)

M1z

(3.29)
M2z
and thus the wupper right-hand element of M(s+(,;8) determines
directly R(s). This c¢learly provides a convenient numerical

procedure. Using the constraints on Tr M and det M, the general
form of M{s+C,s) is

E(S+C) =

M = cos 2mv + J sin 27y = eV (3.30)
with
B)
- 5 g
Jd =
- E(T + *E— Eﬁ (3-31)

Note that Jo=-1.

We repeat:

To cbtaln the tune Vv and the B-function B(s):

Compute the transport matrix for a complete revolution. Then

Tr M{s+C,s) = 2 cos 2mVv

M, = B(s) sin 2nv (3.32)

The reader should not delude himself into thinking that this
sketch provides a strict derivation of the results we have

presented. However, the raw material for providing the mnmissing
links has been given.



3. Nature of the Motion 28

We have already described the nature of the motion in the
case of a constant focussing function k(s). For the general case
of stable motion there is in z,2”, s space again an "invariant
torus™ on which all orbits with a given value of Courant-invariant
€ lie; these orbits again spiral around the torus. At any given
8, the c¢ross-section .of tBe torus is an ellipse, as can be seen

from Eqn (3.25) and 0032+sin =1

Z2

B(s)

£ =

+ B(s) (2" - )2

A

B;

The area of the elllpse is independent of s (Liouville again!)
and is me. At extrema of B(s) we have an erect ellipse; in between
extrema it is skew (ef. Fig. 8). Note the R-function does not
describe the orbit of a given particle but rather the envelope of
many particle orbits.

For a beam, i.e. a phase space population, the typical value
of the phase space area of the particles in the beam is called the
emittance of the beam (careful! sometimes what is quoted is 1o;
other times 20):

S

emittance = <e> = w/£z2><z'2> {3.3%)

The maximum value of emittance which survives in the machine is
called admittance or aperture.

4. FODO Lattice

We now compute B(s) for a FODO lattice. This is, as already
described in the previous section, a regular sequence of focussing
and defocussing quads separated by bending magnets, We first
compute the transfer matrix for a cell {(the basic element of the
lattice consisting of one F quad, one D quad, and the intervening
magnets). We again assume the quads are separated by distance L
and start the transfer matrix from the center of an F quad, where
by symmetry we expect an extremum of the B-function. ‘Then first
caleculate [ef. Eqn. (3.17)]

1 0 1 L ] 0
YF'0 /D'= 1 1
-5 0 1 55 1
1+%§ L
= L L {3.35)
Le? 2F
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Next calculate vDO/F which 1is easy; just change £ +-f. Then
multiply the two together Eo get

1-—I:§ 2L(1+§f-)
of
YF'ODOVF = 5
ete. 1 - _kﬁ (3.36)
2f

By symmetry the B-function is periodic over a cell as well as
over the entire machine. Therefore we can define a phase advance
per cell Y such that

21TV = U n

cells (3.37)

and use the transport matrix for a cell rather than for the whnle
machine to obtain the A-function Bmax at the focussing quad.
According to our recipe

2
L
cos = 1 ~ ——
272
. L
Bmax sin 4 = 2L(1 + ﬁf) (3.38)
1 + 2f
B = 2f j——
max v L
1= 35 {3.39)

Note that, as expected, B"=0. Also by replacing F »D we get Bmin
and

L |3
smax ) 1+ 35 ] 1+ sin 5
) L~ u
min 1 -35 1.-sinj {3.40)
We may observe that for stability we must have
L2
...._.2_..: 2 (3.81)
2f
or

That is, we must not overfocus. In practice a phase advance per
cell of ~90° (sometimes a little less)
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T “/5 {3.43)

is chosen. We shall take p=7/2 for definiteness. Note also that,
because

1
1. (3.44)
the above condition is

aGLL GLL
LR i N .
D Bo 2 (3.45)

which is essentially what we saw in the previous section
(ef.Eqn.(2.8))}. Note also that

<f> " 2 /DL, (3.46)

S0 that the fuzzy parameter L used in the previous section should
be replaced by the basic optical parameter B{s), which measures
the local betatron wavelength according to the relation,
Eqn.(3.10):

As
A = B(3) (3.47)

The B-function in between F and D magnets can be obtained by the
same technique but by employing a different starting point. This
is left as an exercise.

5. Horizontal motion and dispersion

The betatron motion in the horizontal plane, as mentioned in
the previous section, 1is almost the same as for the vertical
plane. Inclusion of the curvature correction in Hill's equation
gives

d2x X
—2+k(s)x * 5 0 (3.48)
ds p

i.e. Dbending magnets produce a 1little focussing. (This should be
put into the matrix 0 for a bending magnet.)
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The dispersion function n{s)} describing the c¢losed orbit
deviation xe for off-momentum particles

- Ap -
X, = n(s)p = n(s)on _ (3.49)
may now be calculated. To first order, contributions to the
dispersion function, which evidently is periodic over a cell, come
only from bending magnets ({which are analogous to prisms). A
magnet of length L contributes deviations &x and &x” given by
(Cf- Fig. ) '

2 2
() [z %
2p P
= (sp = g_ = A .
x L_ L h {3.50)
2 o) "
' o
Let
nis)
£(s) = <:rn (3.51)
n (s)

be the orbit deviation. The change in orbit deviation over a cell
is then expressed by

E(s+2L) = M(s+2L,s)5(s) + V/FA + V/FODA (3.52)

where the last twe inhomogeneous terms are contributed by the
magnets in the cell, and the first term propagates the orbit error
through the cell. By symmetry

E(s+2L) = E(s) = & (3.53)

max

and we get

£

This determines the maximum value of n(s). Evaluation of the right
hand side is done via the following steps:

1
nax = TR VF{ 1+0D)A (3.54)

1. Explicity work out the numerator.
2. Determine eigenvectors of M.

3. Expand the numerator in terms of these eigenvectors.

B, Evaluate gmax'
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One finds
2 .
. L 1 oin B '
Nax = psin2 m (1 + 5 8in 2) (3.55)

2

with n%. obtained, as usual by changing +1/2 to ~1/2 in the
numerator. Putting in numbers for u=m/2 gives

L2 12
Mmax = 2°7 5~ Mmin = 123 5 (3.56)
From Eqn. (3.45) (for p=m/2)

J> . eGiL G G AL ©(3.57)

Hence, for 90° phase advance/cell

.. (B
n_ %A (E E) (3.58)

which is, as advertised, independent of energy, and of order
meters.

A more systematic way of treating dispersion12 is to enlarge
the transport matrix to a 3x3 matrix which acts upon x,x”, and o _.

6. Chromaticity

Not only does the c¢lozed orbit change for off-momentum
particles but also the focal properties of the lattice — in
particular the tune v. The optical analogue is chromatic
aberration. Thus the chromaticity E is defined as the percent
change in tune per percent change in momentum

&y ép

5 = E.ﬁ_ = ggn (3.59)

The natural chromaticity, which is the contribution to £ of
the normal lattice, can be computed directly. From Eqn. (3.38).

L2
cos U =1 --="= (3.60)
2t

and
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§f . _dp
f =5 (3.61)
one finds easily that
v & __ 2 u 8p
v uC T n tan 3 > (3.62)
FPor 90° phase advance, this gives
£ = -1.3 (3.63)

This is too large and, as it turns ocut, also of the wrong sign.
Single-beam instabilities are sensitive to chromaticity, and
stability requires a positive value. The chromaticity is adjusted
by adding sextupole magnets around the ring. Evidently the
sextupole strength {(per cell) needed to do this scales with the
quadrupole strength, independent of energy.

IV. ERRORS AND NONLINEAR RESONANCES

With such a big machine, we might expect it to be impossible
to align. We briefly investigate here the affect of errors and
nonlinearities.

1. Closed orbit error.

Suppose one magnet at position s, provides the wrong bending
field by an amount AE. The normal beng angle AB in the magnet is
eBAs As
Ae - = e (u-1
p P )

Then the angle change &x” caused by the error is

AB AB As

8x” = B AB ~ B 5 {(4.2)

Therefore the perturbed closed orbit is Just a betatron
oscillation which has a kink in slope of magnitude 8x” located at
8,. We need therefore to simply locate a phase point E(so) such
that x(sO+C)=x(so) and x'(sO+C)=6x'+x'(so). Write

x(so)=/EE?cos %o (4.3)
Then

x(sO+C) = VBe' cos (¢0+2nv) ' (4.4)



implying ¢o=—ﬂv. We now calculate 8x”:

x'{so) = /gTSin ¢0 + gg-x(so) {4.5)
and
x*(30+0) = /% sin(¢0+2nv) + %E'X(BO+C) (3,6)
Subtraction gives us the amplitude vef'
- - - A_B
§x7 = x (30+C) - X (so) = 2¢§?sinﬂv * By As (h.7)

and thus the solution for x (Green's function!) is

vB{s)B(s,) s -
0 ABY As ds
X(S) = W ("B-")S '—'o- cos (1!\)-— .rso 'E'('?—)') (”.8)
0

Note that (1) the amplitude is largest if the field error is
located in a region of large B, and that (2) the amplitude hiows
up if v is an integear. This is the simplest kind of resonance.
If on each reveolution the betatron phase at s, is the same, the
error kick will always increase the amplitude in the same way; cone
has just a resonantly driven odcillator.

The total contribution to the closed orbit is obtained, via
superposition, by adding the contributiona of the individual
magnet errors. If they are random, then the rms error is

2 g2
<x2>rms = B(S)E (%E) magnet Npagnet (4.9)
8 sin © WV rms o]
The scaling law is
/N
ax - B fAB). ¢ WA -7 -bagnet (.10)
p B magnet magnet 7 v

For fixed magnet type and magnet quality, and for v"fg, we find Ax
is independent of energy. Choosing & “7m, NT1.4x107, v 400, and
AB/BY107 7, we get <Ax>"™ Smm. Correctidn-elements are a necessity,
but the problem (on paper) does not worsen with energy.

Not all errors need be random. If fourier components (in
longitudinal coordinates) of the error field peak near the
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betatron wavelength, one can get erhancements. Thiz is in fact
one way of correcting closed orbit errors; one analyzes the
Fourier spectrum of the particle orbit deviations, and applies
correction13 {dipole) fields  Thaving the dominant  Fourier
compoenent .

2. Tune Sniftsa

Suppose a quadrupole at s has the wrong field. Then the
tune will be medified. To estimate this, we look at the
modification to the transport matrix

1 0
M(SO‘PC,So) e M(SO+C,30) (ur11)
quad &k 1 '

We need only recalculate the trace

TrM + TrM + £ dk * M
qu

ad 12
= 2 cos 21V + B(so) Equad Skesin2mv (4.12)
and thus
nquad
Av = "TGF—— 8(80)6k
-1 (s AG .l.EﬂEiﬂ (4.13)
=3 %'\ 4T R :

The last factor takes into account the fact that for the 2020
machine {unlike present machines) what we call a focussing element
F consists of a sequence of quadrupole magnets, not an individual
magnet. Again, assuming random errors and averaging around the
ring gives

2 2

<A ™ 1 max 8min AG Nquad R'quad (4.14)
4 2 G f L
Since
.}Ezgﬁi =%6 (4. 15)
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B/N ;

- quad. _A_g og--
<Av> _ﬁ_?;___ (G ) o Equad (4.16)
Again, with
B~ /E
p~E
/ﬁquad' ~ /B {(8.17)

we find a tune-shift independent of energy. Putting in numbers
for the 2020 machine gives

~ o 0G

<Av> 3<a—> {4.18)

3. Miscellaneous Errors

Other such errors can be treated similarly. HA short
compendium c¢an be found in a contribution by King for ICFA
studies of a 20 TeV machine. They include

1. Vertical plane misalignments of dipoles.
2. Quadrupole position errors.

3. Quadrupole tilts.

4. Stray magnetic fields at injection.

5. Gradient errors in dipole magnets.

Examination of the formulae again shows that none of them
scale with energy in such a way that the problems worsen at higher
energy. Typically the number of sources scale 1linearly with
en2rgy, giving a net deviation growing as Yi“YE. Te betatron
wavelength also scales as /E, and magnetic rigidity (a good wordl)

as E. The net deviation then scales as (VE)2/E ~ 1.

4, Tune Shift from Machine Nonlinearities

The magnetic fields in the lattice are not ideal. Higher
order nonlinear terms are present and must be kept under control.
To begin, write, for corrections from dipcle magnets,

AB, = By(1 + gbnxn) (%.19)
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There are also cross terms in x and z {(which are typicelly more
important!}, but we come back to those later. The nodification to
Hill's equation is

2
d7x AB{s) _ 1 n
N + kig)x = B " b g bn(s)x (4.20)

L bnx (4.21)

which 1s, as one could have guessed, most important for large
amplitudes. To estimate the change in tune, we may borrow
Eqn. (4.13):

Av = %-f'r- B(s)Ak (4.22)
and obtain
1 -1
W= - gds B(s)Ib_(s)x(s)" (4.23)

The analysis then proceeds as befores. Assuming uncorrelated
contributions from the different magnets (even more dangerous
here??), and taking a single term in the sum,

2, _ 1 2 2. _n2.2n-2 4
<(A\)n) > = 16ﬁ2p2 Nmag Lmag<bn><8 X > (4.24)

Recalling that <x2>=%<8€>2, we get, roughly
s n-1
2 ~ B 2
< / ' /<n2 .
M/(Avn) “rms B2 o Nmag Lrag ¥ <Pn”pms <Be> (4.25)

The scaling with energy follows, not surprisingly, the pattern we
have seen before, 9nd for higher moments (on paper) even improves,
inasmuch as B8¢™E”'" 2. The lower values of n, say 3 and 4, are
contributed by sextupole and octopole fields, and are relatively
controllable, inasmuch as such fields are deliberately included in
the lattice to control chromaticity and help tame single-beam
collective instabilities.

Higher orders in n are in less control.
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The tune shifts (spreads) are very sensitive to large values

of B, putting an especially high premium on field quality in the
neighborncod of focussing quadrupoles.

5. Resonances

We have already seen that it is unwise to choose an integer
for the machine tune inasmuch as dipole Ffield errors drive
resonances. Field errors of higher multipolarity drive higher
order resonances at tune values, as we shall see, equal to an
integer plus a vulgar fraction p/q, with p and q@ small integers.
After the integer resonances, the simplest case is that of linear
coupling resonances. These are contributed by tilted (skew)
quadrupoles, for example.

dzx

— + kx(s)x = 8k(s)z

ds

dzz

— + kz(s)z = fk{s)x (4.26)
ds

Extension of the transfer-matrix method {to Yxl matrixes)} hqules
this case quite easily and exactly. The analysis is pretty. It
turns out that if

Ve +V, =n (4.27)

with n integer, there exists instability and emittance growth.
For

V. -V, =n . (4.28)

there also exists resonance. Energy is transferred back and forth
between horizontal and vertical motion in a manner similar to

coupled degenerate pendula. But the betatron amplitudes remain
bounded.

Nonlinear resonance phencomena are very rich and interesting.
The dynamics of a single isolated nonlinear resonance can be
worked through in a reasonably systematic way. To go beyond that
point is to enter the active research field of 20th-~century
nonlinear mechanics. Here we shall only partially treat the case
of a single nonlinear resonance. One begins with the perturbed |
Hill's equation
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dzz

5 k(s)z = = % Zb (s)2" (4, 29)
3

and change variables ("Floquet transformation™)

z = vVB(s)l v
dé = % B%ET (0<¢p<2m around the ring) (4.30)

T™isa smooths out the betatron motion into that of a harmonic
osclllator:

5 2 3+n
d“v 2 v 2 n
d—q)-é- + VYV = - p—g B8(s) bn(S)V
~ (n) n
= - E (g Ap cos phlv
- _ 7T A(n)(¢) n (4
=-1 v -31)

The nonlinear term on the right-hand side is periodic in ¢ and
drives the resonance. The above equation can be obtained from the
Hamiltonian (think of ¢ as time!)

2 2.2 (n)
_ P vy AV (d) n+
E = ‘—2 + 5 +§ —I;;T-—-v (4.32)

The conventional methed of soclution starts with this Hamiltonian
and performs successive canonical transformations until the
dominant component of the nonlinearity (for given tune choice) is
isolated. The remaining piece of the nonlinear Hamiltonian 1is
then thrown away and the solution obtained by additional canonical
transformations.

Nowadays the techniques of Hamiltonian mechanics are more
familiar %to many of us in the context of the quantum theory. We
shall use that language here to mnmotivate the procedure. The
nonlinear term c¢ontains, in terms of . creation and destruction

+ + N+ . , e
operators a and a , terms of order (a ) s inducing transitions
with AE={(n+1)}Yy. The driving term A ($) contains only integer
fourier components exp *ipp. If the energy p of a quantum
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delivered by the driving term equals the excitation energy AE of
the oscillator, there will be resonance

p

3]

{(n+1)v (4.33)

or

<
n

HET = vulgar fraction (4.3%)

Wote that n is determined by the multipolarity of the magnetic
field:

n = quadrupole
sextupole
octupole

W n -

while the resonance is driven (essentially)® by the p“th
(circumferential) harmonic of the nonlinear force around the ring.

For coupled resonances, the Hamiltonlan contains terms which
have the fornm

0~ n+1 xm+1

z {4.35)

These contain terms "(a+)n+1(a+)m+1, whicn by the previous
argument gives the resonance condigion
p = (n+1)vz + (m+1)\lx {4.36)

There can also be difference resonances %n,m,g %nteger) as well as
sum resonances, driven by terms ~(a¥)**'(a Y. In this case,
when the z oscillator is extited, "the x oscillator is
simultaneously de-excited. This is a relatively inefficient way
to pump energy into the betatron-oscillators, and we infer that,
in general, sum resonances will be more dangerous than difference
resonances.

To get some more detailed insight into the nature of these
resonances, we return to the uncoupled case of a pure sextupole
term (n=2) in the oscillator calculation Eqn. (4.31). We expect

*The irregularity of the focussing structure (i.e. B~ function)
also contributes to the driving term.
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that the following steps will set up the simplified calculation.

1. 'Te rescnance will be important when VEN+1/3 or N+2/3, N
integer, implying p=3N+1 or p=3N+2.

2. We shall find the equation of motion for the creation
operator a%, which we define as usual

V= J%E (ae~10¢ | axeivdy
p = 1/§q(ae_iw¢ - a*eiw¢) (4.37)

where we anticipate the need to remove some "time"- ependence
(Remember! “time" is ¢) from a* by putting in the e *? factop.
The frequency « will be chosen later; it will be approximately —
but not precisely - equal to the natural frequency v.

3. 0On the r}g%t-hand side, we keep only the term
proportional to e a?, because that is the only one waich will
approximately match the frequencies and produce the resonance
condition, Eqn. (4.33).

Then the equation of motion for a* is easily found to be

%éi = -i(v~w)a*-A e_ip¢ei3m¢a2 (4.38)
0] 2
We choose
- P =
W = 3= Ves (4.39)

to rid the equation of oscillatory factors and finally obtain

2
= -i(v-vres)a*-aza {(4.40)

[aRjyeR
oW
i
}

Now complex a-space is essentially rescaled phase-space, We see
the following features:

1. The phase-space trajectories have a 3-fold symmetry; if
al¢) 1is a solution, so also is al$) exp (2miM/3) with M integer.
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(For the generic nEh nonlinear term, this clearly generalizes to
an (n+1) ~fold symmetry.

2. Tnere exist fixed points, i.=e. "time-independent™
sclutions of da/d¢=0. They satisfy
ad - . &V (4.41)
AZ

and are at a distance from the origin given by

1/3
|af = i) (4.42)
A
2
That is, they are far away unless

Av £ A2 (4.43)

which is, roughly, the condition on tune shift obtained earlier
{Eqn.4.23).

3. On resonance, when Av=0, the fixed points converge to the

origin. One may then find simple radial solutions of the equation
of motion. Writing

a() = p(p)el® (4. 44

with the phase o kept constant, we get

=}

P _

3ia 2
a6 - A2e p

(4.45)

For self consistency, we need dp/dé to be real so that we must
have

o312 _ 44 (4.146)

which gives six solutioas f05 @, corresponding to rays enmanating
from the origin at 6=0", 60 ,... Motion on three of the rays wilil
be outward from the origin, and inward on the other three. In
between these rays it 1s easy to guess the phase-space
trajectories (Fig. 9a). The rays are clearly separatricas. [For
nth-order resonance there are 2{n+1) such separatrices.]

4. Moving back of f-resonance, the phase-space trajectories
near the origin will be circular, osecillator like. Far from the
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origin, well beyond the fixed points, the small cnange in tune
Wwill not affect the motions we deduced for the on-resonance case.
Thus, in between there must be other separatrices 1linking the
fixed-points. The fin91 picture is as in Fig. 9b. For n=2 the
separatrices turn out to’' be straight lines as shown. This is not
true for higher n, although the basic geography — with periodicity
n+1 instead of 3 — is the same as we have described.

Often there will be other focussing forces of  Thigher
multipolarity present. For example if there 1s a zero-harmonic
octupole component which dominates the sextupole component at
large amplitudes the outer separatrices will become c¢losed,
creating "islands of stability" (Fig. 14). This is a common
pattern for the phase<space structure.

In the case of coupling resonances, a similar analysis can be
made. For a generic interaction term

n+1(a +)m+1

+
B - (cosp¢)zn+1xm+1 - e-ip¢ (az) (h.87)
the frequencies wz and wx must satisfy
p = (n+1)mz+(m+‘l)wx {4.48)
in analogy to Eqn. {(4.39). It is convenient to also choose
W=Vy Be=Vy
= : (4.49)
n+1 m+1

in order to obtain fixed-points in the U-dimensional a_-a_ phase
space. (These "fixed"-points actually are one-dimensionil paths.)
We shall, however, not go further into describing the structure of
this phase space.

One should not get the idea that we have even begun to cover
the fascinating topic of nonlinear resonances. The phase space
structure is extremely rich — in fact fractal. Some idea of this
richness can be gleaned by looking at computer- generated iterated
maps — now nonltinear — for_ .even simple nonlinear motions in
2-dimensional phase space. One starts with a few particles at
some initial points {x, (s )’XE(SO))’ compute {including nonlinear
fogg?s) their positidns (xi(s +NC), x; (s,+NC) after N=1,2,...
107" revolutions and then plots all the “restiltant phrase points
(Fig. 11).
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In regions of stability one sees reasonably deterministic
orbits. Near separatrices one sees "stochastic layers"™ emanating
from the unstable fixed points. If one recalls the nature of the
most elementary unstable fixed point - a pendulum balanced at
maximum amplitude — one may appreciate that when a phase point
finds itself near an unstable fixed point its future is vitally
dependent on the details of small perturbations in the present and
tends toward indeterminacy.

But within chaos lies order. Upon looking with a magnifying glass
at stochastic regions, one finds more islands of stabllity with
their own fixed points and stochastic layers, ad infinitum.* And
all this structure is found in a one (space) dimen%ional syaten.
Essential complications occur in higher dimensions.1

We may summarize all these anxious estimates of instabilities
in terms of a tune diagram (Fig.12). The lines show danger zones
from low order resonances. The operating point (really a small
area) must be Judiciously chosen to avoid the important
resonances. There are exceptions: Nonlinear resonances,
deliberately1§timulated, are used to slowly extract a beam from an
accelerator. Also, we may need the resonances in the 2020
machine to blow up the beam to keep a manageable current density
(low beam-beam tune shift) at high current.

V. MACHINE PARAMETERS

The main parameters of the 2020 machine are shown in Table I.
We have included, for comparison, various numbers from the CERN
PS, Fermilab Tevatron, and the 20 TeV ICFA machine {VBA). We now
comment in turn on the choice of parameters in those cases where
it is not obvious from what has been directly presented. Beware!
None of the numbers are consistent to more than 20%.

1. The magnet lengths are chosen as Tm, which is the
state-of -the-art. The 10T field for dipoles and 2T/em for quads
is not state-of-the.art, but is assumed by ICFa as
state-of-the-art for the 20 TeV machine. Therefore we use it.
The choice of tune is somewhat arbitrary, and is based on the
fractlon of circumference in quadrupoles, &/L, chosen to be 10%,
somewhat larger than the custom, but not the maximum which might
be contemplated on economic grounds. With %£/L=0.1, Egqn. {(3.45)
yields for the half-cell length L

*Not infinitum! Quantum mechanies soon intervenes.
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Dividing into the circumference gives the number of cells, and
thereby the tune, which is 1/4 the number of cells. (Remember,
betatron phase advance/cell is 90°.)

To obtain the maximum and minimum values of B in the normal
lattice, we use Eqn. (3.38) directly. Likewise, the nominal value
of the dispersion (or off-momentum) function <n(s)>, and "dilation
factor"” n is found from Egqns. (3.56) and (2.L41).

2. Collision Region

Thus far, we have not inserted straight sections into the regular
lattice of the machine. These are required for beam injection,
beam abort, and RF, as well as for the collision regions.

a. B and B” should be matched at the input and output of the
straight section in order that the optics of the rest of the
machine not be disturbed. This typically implies an integer
contribution of the insertion to the tune.

b. It is deemed desirable to design the insertion region so
that the dispersion function n(s) in the straight section
vanishes. The most straightforward way to change n in some region
is to add an opposed pair of dipole doublets as shown in
Fig. (13). But this is unnecessarily elaborate; it suffices to
decrease (by a factor "2) the bending strength of the dipoles in
the cells adjacent to the straight sections to accomplish the
goal.

In the collision straight-sections, one naturally wants to
focus the beams especially strongly, i.e. reduce the B-function
at the collision point to a small value. One (or more) pairs (or
triplets) of strong, large-aperture quadrupole magnets are
utilized for this purpose. The rough behavior of the B-function
in the straight section is shown in Fig. (14). The B-function in
a drift space has a quadratic behavior:

2
5%40) = 8%,

B( M g* (5-2)
where % is the distance from the collision point s*. [To see this
observe that the transport matrix for one revolution starting a
distance % from s* is
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1 &) [cos 2%y B sin 2wvlf1 -2}

M(s*:04+C,5%4+0) = (5.3)

0 1 u8-1 51n2mVv  cos 27V 10 1

Calculation of the upper right hand element produces Eqn. (5.2)).]

~

Thus the maximum value of B, which we call B, cccurs in the
neighborhood of the final focussing quadrupoles, is roughly

2
g#2 _ (bgppazgng =¥

é = B* - <B> (5.4)

where <B> is a typical (or slightly less-than=typical) value of 8
»
in the normal lattice. For B¥<< <8>, Lstraight >>% , and

L - V<B>é

straight

one has

L% - /B8 (5.5)

The maximum allowed B is determined by aperture 1limitations
of the quad, focal power (the length of the doublet must be less
than 2%*), and chromaticity. Inspection of Egqns. (3.62) and (3.40)
show that, in the very-strong focussing limit of phase advance of
~1B0°/cell, a single doublet in the lattice contributes an amount
8 to chromaticity of

~ 1 max '
i€ "5 /g (5.6)

min

With 4 collision regions {(and twe quad pairs per straight section)
we should have

"B__l P
8 J/ max 8 //b <<
L gL 2 /b (5.7)
v Bmin v B¥

in order tnat the natural chromaticity not be dominated by
interaction-region gquads. Thus we guess
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2 B
%3 = 7222 <500 (5.8)
min

Guessing

R = 10 km

3% - 20m

<8> = 500m (5.9)
gives

L% - 100 m -

Lstraight = 2.5 km (5.10)

These estimates are very superficial, and may be quite wrong.

Some 1%1ues on how toc do better may be found in discussions by
Keil.

In some machines, one must also ensure, because of the
behavior, Eqn. (5.2), of B near the collision point, that the

bunch length not exceed B*. This is evidently not a problem in the
2020 machine.

3. RF System and Synchrotron Radiation

These have already been discussed, and we have nothing much
to add here. Because of the problems with the collective,
single-beam instabilities one might want to increas.: bunch length
by lowering the RF frequency. This would allow, according to the
Keil-Schnell eriterion, Egn. (2.77), more protons per bunch. For
a more-or-less uniformly filled RF bucket, the bunch length and
hence the number of protons in the  hucket is inversely
proportional to the RF frequency.

i, Injection

Superconducting magnets exhibit a kind of hysteresis
assoclated with persistent currents generated in the
superconducting wire. This limits the injection field to >10-20%
of the peak field. Thus a reasonable injection energy is 70 TeV.
Tis implies that the 2020 machine would probably be third
generation: 1TeV + 10TeV + T70TeV -+ 500TeV. At injection energy the
beam emittance will be larger by a factor 7, and beam size by a
factor “2-3, than at peak energy. Taus, unlike what we have
done, tolerances are typically most severe for injection
conditions. This will not affect our estimates of how tolerances



48

scale with energy, inasmuch as the ratio of injection to peak
energy is, to first order, independent of machine.

We have neither addressed the question of how beam is
injected nor how it is aborted, i.e. extracted in no more than one
turn if trouble is sensed. This 1is done with pulsed magnets
{(kickers); I see no epic problems in doing that, although in the
case of aborts the demands on beam dump design may be heavy.

5. Beam Parameters

The emittance of the FNAL machine at transition (~20CeV) is
€ ° 7 mm-mrad. The quoted numbers for the 2020 machine are scaled
up by the E ' factor implied by Liouville's theorem. They should
be considered as roughly 20 estimates, unless otherwise stated.
Ihis incudes the longitudinal emittance.

We should not take seriously the beam parameters after
syncnrotron- radiation damping. They are only relevant for 1qq
intensity beams. We shall Instead assume bunches of 5x10
particles which are "artificially" maintained at an optimal
transverse size by, say, occasionally tuning onto an appropriate
resonance %o blow up the beam. Likewise we zassume the RF buckets
can be uniformly filled either by manipulations at injection
and/or by using the microwave instability itself.

6. Limits from Single-Beanm Instability

We shall assume that the principal! limitation on bunch
intensity comes from the 1longitudinal ‘'microwavem instability
which we have already treated in Section II.7. We shall take the
"long bunch" case, with rms bunch length o =10 em. This produces
an rms momentum spread of order o_ £ 30 GeVoor o¢_ = g /p 6x10 5.
The Keil-Schnell criterion, qu. (2.77), for nthesg parameters
gives, for leln ~ 3 ohms and Ap = 20_ 60 GeV, a 1imiting peak
current of i € 100 ampere. With

peak
i .
peak 1/21T'Js {5.11)

this implies

N<5x 10" (5.12)

As snown in the Supplement, we may hope to put one bunch per
betatron wavelen%th into the machine; this would imply ~400
bunches, or ~“2x10 " p and p stored in the ring. T™is in turn
requires an improvement in antiproton production by a factor
10°-10? over existing sources. [If necessary, this problem could
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be overcome by building ~100 sources; this would not peturb
greatly the total cost of the machinet!t]

7. Luminosity
The formulae for luminosity and beam-beam tune-shift differ

sightly from the rough estimates we have previously used, if one
considers gaussian beams. We use (compare with Eqn. (2.81))

= ;%;%;% (;%) (a,<<q,) (5.13)
Xz
where
Np = No. of protons per bunch
n, = No. of bunches in ring
Ux,z = rms beam size at collision point (5.14)

The vertical beam-beam tune shift per crossing Av is, instead of
Eqn. (2.85),
aNg¥

(5
ZﬁEPUXUZ

Av = (dz<<0x) (5.15)

We shall assume that the beams are separated except in the four
collision regions. This 1is discussed in the Supplement;
electrostatic deflectors are used to separate the beams except at
collision points. We shall furthermore assume that the beam-bean
effects from different collision regions add incoherently, so that
v ~ V¥ = V8. Tere is little theoretical justification
for thiZ °5PHB3an it is not too bad empirically.

The strategy is therefore fixed:

a) N_ - is determined by the limit on beam current from
1BABitudinal microwave instability.

*
b) Bz is minimized via lattice-optics considerations.

c) OXg* i3 determined by the condition (good to factor

%)
Av = .01 (5-16)

It will be larger than the natural value from synchrotron damping.
Putting numbers into Eqn. (5.15) gives
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0;0; =8 x 10—6 cm2 (5.17)
Assuming o: = 20; for definiteness gives for emittance
c (20;)2 g
== g% Hz-)rad (5.18)

This is only slightly less than what exists immediately after
injection and acceleration. We must assume that the beam can be
artificially excited and the size controlled.

This problem exists already in ete” storage rings. It has
proved difficult to blow up the transverse phase space by external
means; the synchrotron damping dominates. However, in those cases
the damping time is of order milliseconds instead of a fraction of
an hour, so the problem for the 2020 machine may not be as severe.
Mechanisms for enlarging the phase space might be tuning onto weak
betatron resonances or adding RF noise.

d) With n_ of order v, as determined by the scheme for
electrostatic separation of the beams, we may now directly
eztimate the luminoesity. We obtain

? = 1033 en™? sec”! (5.19)

and per crossing

28 em"gfcrossing (5.20)

_9210
There is a 1ot of uncertainly in this estimate. A tune shift per
crossing of .005 may be too big by a fﬁqtor 2-3. This influences
linearly the luminosity. Putting 5x10 particles in a short
bunch may be overoptimistic. The diminution in luminosity goes
linearly with N (provided the beam-size at the collision point can
be re-optimized).

But perhaps the most severe constraint comes from detection
problems. There are, with this luminosity, many interactions per
crossing. These cannot be resclved by existing detection
techniques, and thus the physics opportunities are constrained.
These problems are discussed in the next section.

VI. DETECTION PROBLEMS

A traditional design requirement for colliders is that there
be no more than one interaction per bunch crossing. This implies,
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for a total cross-sectionzsthghin factor 2) ~10725 cme, a
luminosity per crossing “10 "em = . Furthermore, we have seen that
the bunch spacing for a pp collider is {optimistically!) ~ one
buneh per betatron wavelength. Since the betatron wavelength
increases with energy this implies (using these ground rules) that
the net luminosity is ~

w
o 1n25 0
L= 107 v (6.1)

For the 2020 machine with v~400 and m0/2W=250 sec"1, this gives

L~ ‘l(')300111"25@0"1 (6.2)

which is hardly adequate for investigation of hard collisions with
subprocess croass-sections (at the energy scale appropriate to this
machine  (~10-300 TeV), which may be estimated ({(just from
dimensional analysis) to be

1
g < s (6.3)

i.e.

-36

o < (4x10 to 4x10'390m2) (6.1)

If one allows multiple collisions per crossing, one cannot
expect charged particle tracking or-at these energies - even muon
identification to be viable. One is left with electromagnetic and
hadron calorimetry. 1In the case of calorimetry, a certain amount
of pileup can be tolerated without losing too much information.
The situation is described in more detail in the Supplement. Here
we summarize a few of the salient points. First of all, we ecan
only hope to see very high p, jets. In principle calorimeter
resolution for energies above 1 Tév i3 not much of a problem,
although the c¢lean isolation of a hadronic jet in the presence of
QCD gluon bremsstrahlung may be a eonsiderable nuisance. We now
estimate the pileup underneath an observed high-p., jet. First of
all we assume the jet is contained within 0.1 steradian. The
distribution of energy into 0.1 steradian {at 90" cms) is
empirically bounded above by an exponential

dN e —_—
e <E_> (6.5)
dET <ET> T
with <E > an increasing function of total cms energy. The value
of d<E >Fdﬂ versus energy is shown in Fig. 15. The value at /s ~
103 T8V might be as large as “5 GeV/steradian. Then 1000
collisions per bunch c¢rossing could put, on average, 500 GeV into
each calorimeter element subtending .1 steradian. The




52

fluctuations about the average, however, are bounded above by a
Poisson distribution.

\ E
E T

a1 T e

_— — <

1 T 5 By (6.6)

For E_>> N<E_> = 1O3x0.5 GeV the exponential is dominant and leads
te négligible background. Thus a threshold jet energy in the
range 1-3 TeV is very reasonable. There thus remains a hope to
reconstruct multijet systems provided only the total mass of the
system and subsystems is very large compared to, say, 3 TeV. But
that 1is, after all, the main reason to build such a high energy
collider in the first place.

VII. CONCLUDING COMMENTS

Within the limitations of this study, as carried out by an
inexperienced amateur, there is no evidence that this monster of a
machine does not work, with luminosity adequate to do the physics
it naturally addresses. Detection problems are demanding because
of pileup, but should not be insurmountable. There are evident
practical problems. Not only is there a funding pgoblem, but also
a2 system problem. Not one of the 2x10 cantankerous
superconducting magnets and their complex support systews can
fail. '™is question of quality control might well be the most
demanding technical problem of all.

Various problems of this machine were addressed . by
participanta of the school. These 1included the question of
disposal of synchrotron radiation (use warnm "serapers" located
between magnet strings), beam abort systems (conventional methods
seem to work), the electrostatic deflection system to keep p and p
bunchegs from colliding except in interaction regions; and
detection problems associated with multiple interactions per bunch
crossing. These latter two topics are included here in two
supplements.

A major omission in these lectures is an adsquate discussion
of single-beam instabilities. The reader is urged to consult the
references in Appendix I for more information, in particular
A. Chao (ref. A7, SLAC School), C. Pellegrini (ref. A7, Fermilab
School), and A. Hofmann et.al. {ref. Al, Erice School).

We thank T. Ferbel for his skillful organization of this
school, and the participants for help and criticism in the
preparation of this material. We thank also L. Teng for helpful
eriticism.
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APPENDICES

I. BReferernce Material

There is considerable material on high energy accelerators
and storage rings, ranging from textbooks to monograpns and
lecture series, to published papers, and to preprints and internal
laboratory memeoranda. {(The latter component often seems to be the
dominant one!) I am not enough of a scholar to provide an
authoritative bibliograpnry, but shall simply list here a few which
were used in preparation of these notes. This 1listing should
provide the reader with an avenue into more detaled papers on
specific topics.

REFERENCES -

Al. H. Bruck, "Circular Particle Accelerators;"™ PUF, Paris
{1966). A good general reference. (Unfortunately the only
copy I could locate was in French.) Translated by LASL
LA-TR-72-10 Rev.

A2. M. Sands, SLAC report SLAC-121; also "Physies  with
Intersecting Storage Rings," ed. B. Touschek, Acadenmic
Press, N.Y. 1971. This is a splendid introduction to e‘e”
ringa and especially problems of synchrotron radiation.

A3. E. J. N. Wilson, CERN 77-7, "Proton Synchrotron Accelerator
Theory."™ CERN academic-training 1lectures; a very nice
introduction.

All, "Theoretical Aspects of the Behavior of Beams in
Accelerators and Storage Rings," CERN 77-13. A quite
comprehensive discussion of many topics at a fairly advanced
level. (This 1is the procesdings of an Erice school on
accelerators.)

A5. Proceedings of the ICFA  Workshops on Possibilities
Limitations of Accelerators and Detectors. The first (1§78)
is a Fermilab report; the second (1979) a CERN report. These
consider design problems of very big (e.g. 20 TeV) rings and
are very useful source material for considering the 2020
machine.

A6. M"Nonlinear Dynamics and the Beam-Beam Interaction," ATIP
Conference Proceedings No. 57. This nicely explores the
interface between accelerator design and 20th century
nonlinear mechanics.
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A8.
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"Physics of High Energy Particle Bccelerators,™ ATP
Conference Proceedings No. B7 and No. xxx, ed. R. Carrigan,
R. Huson, and M. Month. This contains the proceedings of a
1981 Fermilab Summer Schooi. A second school was held at
SLAC in 1982; proceedings have not yet appeared.

"Techniquea and Concepts of High Energy Paysies," ed. T.
Ferbel (Plenum, New York, 1981). This is the 1980 NATO
Summer Institute Proceedings, and contains lectures by M.
Month on specialized topiecs including beam-beam interaction
and single-beam instabilities.



55

APPENDIX II: Limerick to a Theoexperimentalist

A well known theorist, Bjorken,

Field theory his great claim to fame;
Did an experiment one day,

Couldn't re-normalise away,

And something just snapped in his brain.

The result of this now must be
We henceforth accept G-U-T}
That theorists may change,

To plumbers ain't strange,

Especially at quadrillion eV,

Robert J. Wilson
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APPENDIX III. The Missing Supplement

Regrettably the supplement mentioned in the text was unable
to be completed. It was meant to consist of two parts. The
material for the first, on bunch avoidance using electrostatic
Separators, was worked out by Nikos Glokaris. The schems is
practical and appears to cause no great difficulty, although it
imposes geometrical constraints on the lattice design. :

The material for the second part was provided by Geoffrey
Taylor. It considers the interesting problem of detector deslgn in
the presence of multiple interactions per beam crossing. For jet
transverse momenta well in excess of 1 TeV, problems of pileup
appear to be small.

It wvas my intention to assist in editing and assembling this
material together with the authors. But other pressures and
cormitments crashed in as the publication deadine approached, and
there was no time available to properly complete the work. I
deeply regret this failure and apologize to Nikos and Geoffrey,
and thank them for their hard work.
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FIGURE CAPTIONS

The "Livingston plot" showing growth of attained cms energy
of hadron machines veraus time.

Typical betatron amplitude of a particle in a FODO lattice.
Also shown is the amplitude function(7iZ" (cf. Section III).

Typical z-p_ phase-space population at various points in the
FODO lattide (moving downstream): {a) At the center of an F
(focusaing) quadrupole, (b) Between F and D (defocussing)
quadrupoles, {c) At a D quadrupole, and (d) Between D and F
quadrupoles.

Closed orbit of an off-momentun particle in the FODO
lattice.

Structure of longitudinal pnase space for a bunched beam (in
absence of acceleration and/or synchrotron radiation).

Structure of longltudinal phase space during acceleratlon
(or in presence of synchrotron radiation).

"Invariant torus® for particles of a given emittance
traversing a constant focussing structure.

Pnase-space positions of particles of a given emittance at
various locations in a FODO lattice. The curves are locl of

constant emittance. Compare Figs. 3 and 8. (a) F quad, (b)
between F and D, {¢) D quad, and (d) between D and F.

Regions of z—pz phase space near a 1/3-integer resonance:
(a) on resonanfe, and (b) just off resonance.

Modification 1in presence of a zero-harmonic octupole
component which produces stability at large amplitudesa.

Iterated mapa 1in presence of large nonlinearity. From
Reference A6, pp. 232 and 235.

Tune diagram showing dangerous resonances.

Simple dispersion suppressor.
Schematic of opties in ceollizsion straight section.

. . 7
Mean transverse energy into one steradian at 90" wversus

‘ecpollision energy.



TABIE I: PARAMETER LISTTT

Scaling Rule 2020
Energy per beam “E 500 Tev
Peak magnetic field "B 10T
Bending radius “E/B 170km
Naninal circumference “E/B 212600m
Dipole magnet Length m
Number of dipoles 170,000
Peak quadrupole Gradient G 2T/am.
Quadrurole Length m
Cell length ~(B,/G) /2 ~700m
Betatron phase advance/cell 9p°
Betat‘:ron tuge ‘ 1/2
{(horizontal Zvertical) {EG/B) 400
Transition energy (EG/B) /2 - 400 GeV
Length of quads per half-cell ~35m
Number of aquads per cell 10
Total nunber of aquads 16,000
Maximun 3 (E/8G) 1/ ~1200m
Minimum ~200m
Naminal dispersion <n(s)> ~g1 0.7m
Mamentum compaction n {(B/EG) 4><10_5

No. of long straight
collision regions 3



Full length of long
straight section

B* at oollision point

Free space around
collision point

Maximum B at quads
Rewlution frequency
RF frequency
Harmonic number

RF wltage
Synchrotron frequency
Maximum Ap

Maximum Ap/p

Bucket area

Synchrotron radiation
energy loss/turn

Photon critical enerqgy

Longitudinal damping time

Transverse damping time
Injection energy
Transverse emittance

at injection

at peak energy*
Neaminal rms beam size:

at injection

at peak energy*

(EBG)

(E3/G) /2

B/E

-1/4

60

~3km
~20m

+100m
10kan
250Hz
S50Mhz
2><106
5GaV
“1Hz
+150GeV
3x107

“600 eV-sec

3 Gev
300 kev
~10 min

~20 min

70 TeV

~300 wmurad

40 ym-purad

“0.2 mm

~70n



Naninal mms gr-—spread:
at injection
at  peak energy*

Longitudinal emittance
at injection

Rms mamentum spread Ap*
Ems Ap/p at 500 Gev*
Rms bunch length*
Naminal rms beam size’
Horizontal
Vertical
Emittance'!'
Horizontal
Vertical
Rms mamentum Spread+
Rms Ap/p

Rms bunch length®

Rms beam size at collision+

Horizontal

Vertical

(3G /4

"1

1

"1

(B3/EG2) 1/2

(B7/E3G3) 1/2

(mm) /2

Opticnal mms beam size (5007TeV)

Horizontal
Vertical

Optimal mms emittance
Hori zontal

Vertical

6l

+30 MeV

70 MeV

2eV—sec
+15 GeV
£3%107°

3 cam

20u?

>
Jum~urad”
10 2 m-prad?

4u

0.5u

901

904

20mum-ymrad

20mm-pmrad



Optimal rms mamentim

spread Ap/p £6x10 >
Cptimal. rms bunch lengtn *5cm
Optimal rms beam size
at collision
Horizontal 40u
Vertical 204
No. of p(p) pér bunch 5x101
No. of hunches 400
Beam-beam tune
shift/crossing _ .01
Luminosity 1033 %sec”
Energy stored in each beam 20GT
RF power 2000w
Refrigeration power 3GW?

¥Prior to synchrotron damping.
"At 500 Tev, dilute beam, after synchrotron damping.
tiThe parameters for ICFA, TeV I, and PS were hard for me

to assemble and verify. They hawve been dropped for the
table,
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